Leukotriene D(4) induces stress-fibre formation in intestinal epithelial cells via activation of RhoA and PKCdelta.

نویسندگان

  • Ramin Massoumi
  • Christer Larsson
  • Anita Sjölander
چکیده

The intestinal epithelial barrier, which is regulated by the actin cytoskeleton, exhibits permeability changes during inflammation. Here we show that activation of the CysLT(1) receptor by the inflammatory mediator leukotriene D(4) (LTD(4)) causes a rapid increase in stress-fibre formation in intestinal epithelial cells. This effect was mimicked by cytotoxic necrotising factor-1 (CNF-1)-induced activation of RhoA, overexpression of constitutively active RhoA (L63-RhoA) and phorbol-ester-induced activation of protein kinase C (PKC). In accordance, inhibition of RhoA, by C3 exoenzyme or by dominant-negative RhoA (N19-RhoA), as well as GF109203X-induced inhibition of PKC, suppressed the LTD(4)-induced stress-fibre formation. Introduction of the dominant-negative regulatory domain of PKCdelta, but not the corresponding structures from PKCalpha, betaII or epsilon, blocked the LTD(4)-induced stress-fibre formation. Evaluating the relationship between PKCdelta and RhoA in LTD(4)-induced stress-fibre formation, we found that C3 exoenzyme inhibited the rapid LTD(4)-elicited translocation of PKCdelta to the plasma membrane. Furthermore, CNF-1-induced stress-fibre formation was blocked by GF109203X and by overexpression of the regulatory domain of PKC-delta, whereas PKC-induced stress-fibre production was not affected by N19-RhoA. We conclude that PKC-delta is located downstream of RhoA and that active RhoA and PKCdelta are both necessary for LTD(4)-induced stress-fibre formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Soluble uric acid induces inflammation via TLR4/NLRP3 pathway in intestinal epithelial cells

Objective(s): Hyperuricemia is a risk for cardiovascular and metabolic diseases, but the mechanism is ambiguous. Increased intestinal permeability is correlated with metabolic syndrome risk factors. Intestinal epithelial cells play a pivotal role in maintaining intestinal permeability. Uric acid is directly eliminated into intestinal lumen, however, the mechanism and e...

متن کامل

Leukotriene D4 induces association of active RhoA with phospholipase C-gamma1 in intestinal epithelial cells.

It has been previously suggested that leukotriene-induced Ca2+ signalling is mediated through a Rho-dependent process, but neither direct activation of Rho nor a mechanism underlying such signalling has been reported. Accordingly, we used the Rhotekin binding assay to assess RhoA activation in intestinal epithelial cells and observed that RhoA was activated by leukotriene D4 (LTD4). We also fou...

متن کامل

Expression of BRG1, a human SWI/SNF component, affects the organisation of actin filaments through the RhoA signalling pathway.

The human BRG1 (brahma-related gene 1) protein is a component of the SWI/SNF family of the ATP-dependent chromatin remodelling complexes. We show here that expression of the BRG1 protein, but not of an ATPase-deficient BRG1 protein, in BRG1-deficient SW13 cells alters the organisation of actin filaments. BRG1 expression induces the formation of thick actin filament bundles resembling stress-fib...

متن کامل

Molecular decipherment of Rho effector pathways regulating tight-junction permeability.

We reported recently that the activation of RhoA induced an increase in transepithelial electrical resistance (TER). To clarify effectors of Rho for this RhoA-induced regulation of tight-junction permeability, we introduced two effector-loop mutants of constitutively active RhoA(V14), RhoA(V14/L40) and RhoA(V14/C42), into Mardin-Darby canine kidney cells in an isopropyl beta-D-thiogalactoside-i...

متن کامل

Novel role for the Lu/BCAM-spectrin interaction in actin cytoskeleton reorganization.

Lu/BCAM (Lutheran/basal cell-adhesion molecule) is a laminin 511/521 receptor expressed in erythroid and endothelial cells, and in epithelial tissues. The RK573-574 (Arg573-Lys574) motif of the Lu/BCAM cytoplasmic domain interacts with αI-spectrin, the main component of the membrane skeleton in red blood cells. In the present paper we report that Lu/BCAM binds to the non-erythroid αII-spectrin ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 115 Pt 17  شماره 

صفحات  -

تاریخ انتشار 2002